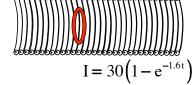

Problem 31.14

 $n_{\text{solenoid}} = 400 \text{ turns/meter}$ $N_{\text{coil}} = 250 \text{ turns}, \quad R_{\text{coil}} = .06 \text{ m}$

With Faraday's Law problems (i.e., Induction problems), you always want to determine the magnetic field, then the magnetic flux, then take the derivative. The solenoid generates a magnetic field of:


$$\begin{split} B_{\text{solenoid}} &= \left(\mu_{\text{o}} n I\right) \\ &= \left(4\pi x 10^{-7} \text{ T} \cdot \text{m/A}\right) \left(400 \text{ turns/m}\right) \left[30 \left(1 - e^{1.6t}\right) A\right] \\ &= 1.5 x 10^{-2} \left(1 - e^{1.6t}\right) \text{ T} \end{split}$$

1.)

The magnetic flux through the coil is a function of the cross-sectional area of the coil, so:

$$\begin{split} \Phi_{B} &= \vec{B} \bullet \vec{A} \\ &= \left[\mu_{o} n I \right] \left(\pi R_{co}^{2} \right) \\ &= \left[1.5 \times 10^{-2} \left(1 - e^{1.6t} \right) \right] \left(\pi (.06 \text{ m})^{2} \right) \\ &= 1.7 \times 10^{-4} \left(1 - e^{1.6t} \right) \text{ Webers} \end{split}$$

 $n_{\text{solenoid}} = 400 \text{ turns/meter}$ $N_{\text{coil}} = 250 \text{ turns}, \quad R_{\text{coil}} = .06 \text{ m}$

And the EMF is:

$$\begin{split} \epsilon_{\text{induced}} &= -N_{\text{coil}} \frac{d\Phi_{\text{B}}}{dt} \\ &= -(250) \left[\frac{d \left(1.7 \times 10^{-4} \left(1 - e^{1.6 t} \right) \text{ Webers} \right)}{dt} \right] \\ &= -(250) \left(1.7 \times 10^{-4} \right) (-1.6) e^{1.6 t} \text{ V} \\ &= 6.8 \times 10^{-2} e^{1.6 t} \text{ V} \end{split}$$

2.)